
Introduction
There is no widely recognized chemical classification of
sedimentary rocks. The geochemical classification of
sedimentary rocks is not as well developed as that for
igneous rocks, and most systems for sedimentary rock
classification utilize features such as grain size and the
mineralogy of the particles and matrix (Rollinson
1995), which can be observed in hand specimens or in
thin sections. In cases where the geochemistry of parti-
cular sedimentary rocks is being studied it is always
useful to find "boundaries" that demarcate certain rock
types or, at least, separate them on the basis of major
and/or trace elements. Separation of rock types is very
important in investigations of the relationships among
chemical elements, their associations in certain rock
types etc.

Calcitic, dolomitic and terrigenous materials are the
major constituents of most carbonate rocks and
mudrocks. These constituents could aid in the esta-

blishment of a general classification. Mineralogical
investigations of sedimentary rocks, combining thin
sections, XRD along with major elements like Ca, Mg,
Si and Al, could provide a more reliable classification.
However, in many cases, determinations of major and
trace element concentrations are not always accompa-
nied by thin section or XRD studies. The handling of
geochemical information (for example, geochemical
variables – chemical elements) is most common nowa-
days. Considering the fact that the nature of most real-
world data is very complex and that the relationships
among variables (for example, chemical elements) are
nonlinear, it is essential to employ an appropriate tech-
nique that could handle such data in a statistically "cor-
rect" fashion. Whereas multivariate-statistical approa-
ches always produce the same result when applied to
the same data set, a technique like the artificial neural
network (ANN) is more like a living system in that
various analyses most likely will not produce exactly
the same result. ANNs have been applied to solving
problems in a wide variety of fields. Applications of
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ANNs to the Earth sciences are still rare. They have
been applied, for example, to problems of well log
interpretations (Baldwin et al. 1989, 1990; Rogers et al.
1992), for identifications of linear features in satellite
imagery (Penn et al. 1993), for geophysical inversion
problems (Raiche 1991), for chemostratigraphy
(Malmgren & Nordlund 1996), for predictions of past
sea-water temperatures (Malmgren et al. 2001) and for
analyses of paleovegetation data (Grieger 2002).

For comparison of the performance of different techni-
ques applicable to classification of sedimentary rocks
based on geochemical properties we explored the
potential of four pattern-recognition techniques,
ANNs, the k-nearest neighbour technique (k-NN),
linear discriminant analysis (LDA) and "soft indepen-
dent modelling of class analogy" (SIMCA). The study
was based on geochemical data from three boreholes
penetrating parts of the Silurian of Lithuania.

Material and methods
The three boreholes analysed here, Kurtuvenai-161,
Ledai-179 and Jocionys-299, represent different sedi-
mentary environments of the Wenlock (Silurian) of
Lithuania (Fig. 1). Initially, samples were collected to
cover a wide range of rock types according to their lit-
hology. In total, 210 samples were taken: 89 from the
Kurtuvenai-161, 69 from the Ledai-179 and 52 from the
Jocionys-299 boreholes. We used 179 of these samples
in this study; the remaining 31 samples were not inclu-
ded, since some rock types contained only a few sam-
ples. The deepest part of the sedimentary basin envi-
ronment is represented by the Kurtuvenai-161 bore-

hole, the shallowest by the Jocionys-299 borehole and
the transitional by the Ledai-179 borehole (Paskevicius
1997).

The samples were analyzed for the content of major (Si,
Al, Fe, Mn, Mg, Ca, Na, K, Ti and P) elements, oxides
and trace elements (V, Cr, Co, Ni, Cu, Zn, Rb, Pb, Ba, Sr,
Y, Zr, Nb and Th) using XRF. Inorganic and organic
carbon contents were determined using IR spectrome-
try. All geochemical analyses were carried out at the
Geological Institute, Oslo University, Norway.

A raw semi-quantitative classification of the seven rock
types was made according to the calcitic, dolomitic and
terrigenous material present in the samples (Table 1).
This simplified classification table is usually used for
classification of carbonate rocks and mudrocks. The
details of this mineralogical classification and its prin-
ciples can be found in Grigelis (ed.) 1981.

Initially, the rock samples were classified according to
the general description of the core material. Thin secti-
ons and X-ray diffraction were applied to obtain a
more detailed classification. Detailed descriptions of
sampling, analytical techniques and thin-section stu-
dies can be found in Kaminskas (2002).

Brief descriptions of the quantitative
techniques
Artificial neural networks (ANNs)

ANNs are computer systems that have the ability to
learn, using some pertinent learning algorithm, one or
several output signals from a set of input signals. The
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Fig. 1. Study boreholes: location and facial zonation of Wenlock (Silurian) sedimentary environments: 1 – the deepest part; 2 - intermediate
zone; 3 – the shallowest part. Dotted lines mark the boundaries between sedimentary environments zones.
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objective behind the application of ANNs is to attempt
at reproducing the output signal(s) from the input sig-
nals with a minimum error rate through a specific trai-
ning process. ANNs have the ability to overcome pro-
blems of fuzzy and nonlinear relationships between the
sets of input and output signals. The initial data-set is
divided into two random portions, a training set, which
is used for training the ANN, and a test set to which the
trained network is applied for estimates of the error
rate.

An ANN is an information-processing system inspired
by the way the densely interconnected, parallel struc-
ture of the mammalian brain processes information.
The ANN is composed of a great number of processing
elements that are analogous to neurons and are tied
together with weighted connections that are analogous
to synapses. The most common type of ANNs is the
multilayer perceptron, which is most often trained
using the back propagation (BP) algorithm. The ANN
is trained to reproduce the target variable(s) from the
input variables by adaptively updating the synaptic
weights that are associated with the strength of the con-
nections. Learning in a BP network is based on the gra-
dient-descent method, that is, the weights are adjusted
so that the changes at each time will follow the steepest
"downhill" direction on the error surface. The opti-
mum weights are thus determined iteratively by opti-
mizing certain "energy" functions as training proceeds.
Comprehensive descriptions of multilayer perceptron
ANN can be found in Wasserman (1989), Webb (2002)
and Malmgren & Nordlund (1996, 1997).

We used the Trajan 4.0 Professional software package
(www.trajan-software.demon.co.uk) in our ANN appli-
cations.

Linear discriminant analysis (LDA)
Normally, discriminant analysis amounts to establis-
hing linear functions, representing a planar surface
with p-one dimensions (p=the number of variables),
that optimally distinguish two predefined groups of
observations. In this study, we assigned each of the
observation vectors in the various test sets to one of the
predefined rock groups through computations of
Mahalanobis' generalized distances between these vec-
tors and group mean vectors (Cooley & Lohnes 1971).
These generalized distance measures were then conver-
ted to mathematical probabilities of referability of a
test-set observation to any of the predefined groups
(Cooley & Lohnes 1971). Each of the test-set observati-
ons was subsequently assigned to the group for which
the probability was highest. Malmgren & Kennett
(1977) applied this procedure to a taxonomic problem
in recent planktonic foraminifera.

K-nearest neighbors (k-NN)
The k-nearest neighbor is a conceptually simple techni-
que based on the Euclidean distance between observati-
ons in multidimensional space (Kowalski & Bender
1972). The allocation of the test-set members to the
training set classes is dependent upon the distances of
the k shortest Euclidean distances between these sets. In
the application to the current data-set, we set k equal to
3, and we monitored the distances from each of the test
set members to each of the training set members. A
test-set member is referred to that training-set class to
which the majority (two or three) of the three closest
training set members belonged, as indicated by the
Euclidean distances.
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Table 1. The simplified classification table of carbonate rocks and mudrocks according calcite, dolomite and 
terrigenous material* percentages.  

Rock type Calcite Dolomite Terrigenous Remarks
(%) (%) material (%)

limestone "clayey" 65-90 0-10 10-25
limestone "clayey" dolomitic 50-80 10-25 10-25 Terrigenous material>Dolomite
limestone dolomitic "clayey" 50-80 10-25 10-25 Dolomite>Terrigenous material
mudstone >33.3 0-10 25-50
mudstone dolomitic >33.3 25-50 25-50 Calcite>Dolomite
dolostone 0-10 80-100 0-10
dolostone "clayey" 0-10 65-90 10-25

* - terrigenous material equals: 100-(calcite+dolomite)



Soft independent modeling of class 
analogy (SIMCA) 
SIMCA may involve any or several of four distinct
levels (Wold 1976; Wold et al. 1984). Level 1 of SIMCA
is devoted to developing mathematical rules for each of
a number of preset groups (termed classes in SIMCA)
in the training set by fitting separate R-mode principal
component models to each of them. The dimensiona-
lity of a principal component solution is determined by
a cross-validation technique. In level 2, the prediction
phase, these rules are used to assign new observations
to any of the given classes on the basis of their degree of
fit to the various class models using a distance measure.
At both levels, atypical observations ("outliers"), that is,
observations with a data structure that does not accord
with a class model, may be identified. In this way,
observations of unknown affinity that cannot be classi-
fied with any training set class may be interpreted as
being referable to a yet unknown class.

Levels 3 and 4 of SIMCA are designed for quantitative
predictions of one or several variables from a multiva-
riate setup through partial least squares (PLS) models
(Wold 1982). These levels of SIMCA are not used here.
So far, SIMCA modeling, originally developed for data
analysis in the field of chemometry, has been applied to
geological problems by, for example, Griffiths (1984),
Haugen et al. (1989), and Wei (1994).

Canonical Variates Analysis (CVA)

CVA is a technique for graphical representation of the
interrelationships among groups of multivariate sam-
ples, like the rock groups analysed here, on the basis of
plots of the group means and individual sample points
along specific coordinate axes (the canonical variates;
Reyment et al. 1984). These canonical variate axes are
computed so as to maximize the ratio of the between-to
within-group variance and to be uncorrelated in cano-
nical variate space.

Estimates of Error Rates

The success of a classifier may be determined by com-
puting the percentage of misclassifications, the "error
rate," of predictions in a data set which is not part of
the training set. Instead of relying on a single test set for
estimating the performance of the various classifiers,
which may be misleading (Weiss & Kapouleas 1989),
we created five different random test sets from our ori-
ginal data. Each such test set contained 20% (37 parti-
cles) of the original observations. The remaining 80%
(146 particles) was used as training sets. We then
employed a cross-validation technique for estimating
the ability of the classifiers to correctly predict the class
referability of the test set samples (Stone 1974; Weiss &

Kapouleas 1989). The error rates computed are thus
average rates of misclassification (%) for the five diffe-
rent test sets. The training and test sets are automati-
cally generated by the Trajan ANN software, and the
same partitions were used to derive the error rates also
for the LDA, k-NN, and SIMCA.

Relative abundance data

Relative abundance data, adding up to a unit value
(unity or 100%) in individual samples, have long been
known to be subject to the so-called constant-sum con-
straint (Pearson 1897; Chayes 1960). In our applicati-
ons of CVA, LDA and SIMCA to the major element
data-set in which the correlation structure of the data
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Fig. 2. Graphical illustration of the configurations of the individual
samples from the seven petrographically identified rock types along
the axes of the first two canonical variates for the major and trace
elements. These axes account for 93.5 and 94.2%, respectively, of the
variability in multivariate space.



matrix suffers from the constant-sum constraint, which
could seriously impair the outcome of these analyses,
we used a centred log-ratio transformation to relieve
this constraint (Aitchison 1981, 1986). Log-ratio trans-
formations imply mathematical operations in a so-cal-
led simplex space, constituting a limited part of the ori-
ginal p-dimensional Cartesian space. The results of k-
NN and ANNs are not affected by the constant-sum
constraint, since they do not involve computations of a
covariance or correlation matrix, and in the applicati-
ons of these techniques the raw, untransformed data
were used. The data-set used was the same for all these
techniques.

Results
Canonical variates analysis   

Figure 2 shows the locations of individual rock samples
along the axes of the first two canonical variates for the
major and trace elements, respectively. These canonical
variates account for most of the variability among the
group mean vectors (93.5 and 94.2%, respectively). For
the major elements, the dolostone samples can be cle-
arly distinguished from the other rock samples along
the first canonical variate axis. The mudstone dolomitic
and dolostone "clayey" samples are likewise separated
from most of the other samples along the first axis but
display some slight overlap with the limestone dolomi-
tic "clayey" samples. Along the second axis, most of the
mudstones are separated from the limestone "clayey",
limestone "clayey" dolomitic, limestone dolomitic
"clayey" and mudstone samples, but some of the muds-
tone samples overlap with these other rock groups. The
limestone "clayey", limestone "clayey" dolomitic and
limestone dolomitic "clayey" samples cannot be une-
quivocally differentiated on the basis of their geoche-
mical compositions.

The dolostones cannot be as clearly separated from the
dolostone "clayey" samples on the basis of the trace ele-
ments as in the case of the major elements. For the
trace elements the dolostone "clayey" also display a
considerable overlap with the mudstone dolomitic
samples. The limestone "clayey", limestone "clayey"
dolomitic, limestone dolomitic "clayey" and mudstone
samples show overlaps similar to the situation for the
major elements, even though most of the mudstone
and limestone dolomitic "clayey" samples are also dis-
tinguishable from the limestone "clayey" and  limestone
dolomitic "clayey" samples by  their trace elements.

Considering the lack of discrete subclusters for both the
major and trace elements it is relevant to ask the ques-
tion of how well the ANN and statistically based pat-
tern recognition techniques are able to distinguish
these various rock types.
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Fig. 4. Error rates (percentages of misclassification in the various rock
types) for the artificial neural network (ANN), linear discriminant
analysis (LDA), the k-nearest neighbours (k-NN) and soft indepen-
dent modeling of class analogy (SIMCA) using trace elements. For
legend, please refer to Fig. 3.

Fig. 3. Error rates (percentages of misclassification in the various rock
types) for the artificial neural network (ANN), linear discriminant
analysis (LDA), the k-nearest neighbours (k-NN) and soft indepen-
dent modeling of class analogy (SIMCA) using major elements



Major and trace elements

Individual and average error rate percentages for ANN,
LDA, k-NN and SIMCA are given in Tables 2 and 3 for
major and trace elements, respectively. For the major
elements two techniques, k-NN and SIMCA, show the
highest mean error rates (15.6 and 24.7%, respectively;
Table 2). The error rates for the individual test sets
range between 12.5 and 23.6% for k-NN and between
19.4 and 27.8% for SIMCA.

The lowest mean error rates for the major elements are
achieved applying ANN (6.9%) and LDA (8.1%). The
overall better performances of ANN and LDA as com-
pared to k-NN and SIMCA are also indicated by the
error rates for individual test sets, which range between
4.2 and 9.7% for ANN and between 6.9 and 11.1% for
LDA. Hence, in terms of average error rates ANN and
LDA provide better results than k-NN and SIMCA
(Table 2).

For the trace elements the results are similar: again the
highest mean error rates are for k-NN (24.2%) and
SIMCA (24.2%; Table 3). For these techniques the error
rates for the individual test sets fluctuate between 19.4
and 29.2% for k-NN and between 19.4 and 31.9% for
SIMCA. Similar to the major elements, the lowest mean
error rates are obtained for ANN and LDA (13.9 and
8.0% respectively). Individual errors are also clearly
much improved for the ANN (11.1-15.3%) and LDA
(5.6-9.7%) compared to k-NN and SIMCA.

A comparison of the performance of the techniques for
major and trace elements indicates that two of them,
LDA and SIMCA, produce similar results for both types
of elements (about 8 and 24-25%, respectively). On the
other hand, the ANN and k-NN yield considerably
lower error rates for the major elements (about 7 and
16%) as compared to the trace elements (about 14 and
24%, respectively).

From these results we conclude that k-NN and SIMCA
do not handle the partitioning of the rock types in an
optimal fashion. The LDA and ANN give a better result
than the k-NN and SIMCA models whether major or
trace elements are used as variables.

Error rates for individual rock types

Error rates were also computed for each of seven rock
types. The results, presented in Figs. 3 and 4, are evalua-
ted for both major and trace elements.

The error rates in limestone varieties (dolomitic
"clayey" and "clayey" dolomitic) range from 33.3 to
100% (Fig. 3). In contrast, the lowest error rate is obtai-
ned for dolostone (0.0-5.4%). Error rates in "clayey"
limestone and mudstone range from 10.6 to 14.9% and
from 3.2 to 7.9% respectively. This may indicate that
the variation of the major elements in these rock types
is quite stable. It suggests that the terrigenous ("clay")
component was not that much affected by post-deposi-
tional events. However, the major elemental composi-
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Table 2. Error rates in each of five test set partitions, average rates in the test sets, and 95% confidence intervals 
for the average error rates for the techniques discussed in this paper using major elements.

Error rates, %

Set1 Set2 Set3 Set4 Set5 Average 95%

ANN 8.3 4.2 5.6 9.7 6.9 6.9 ±2.7
LDA 8.3 6.9 6.9 11.1 6.9 8.1 ±2.3
k-NN 12.5 23.6 13.9 15.3 12.5 15.6 ±5.8
SIMCA 19.4 27.8 27.8 20.8 27.8 24.7 ±5.2

Table 3. Error rates in each of five test set partitions, average rates in the test sets, and 95% confidence intervals 
for the average error rates for the techniques discussed in this paper using trace elements.

Error rates, %

Set1 Set2 Set3 Set4 Set5 Average 95%

ANN 13.9 13.9 11.1 15.3 15.3 13.9 ±2.1
LDA 6.5 9.7 5.6 9.7 8.3 8.0 ±2.3
k-NN 19.4 25.0 29.2 19.4 27.8 24.2 ±5.7
SIMCA 20.8 23.6 31.9 25.0 19.4 24.2 ±6.1



tion of the sedimentary rocks largely depends on the
two major components - carbonate and terrigenous
(not discussed in this paper). From Figure 3 it is appa-
rent that the most successful rock type classification for
the major element data could be achieved by applying
the ANN and LDA techniques. The overall error rate in
individual classes (rock types) ranges from 0.0 to 33.3%
(ANN) and from 0.0 to 26.7% (LDA). The k-NN tech-
nique as well as SIMCA fail to provide good classifica-
tion (Fig. 3).

Most trace elements (Zr, V, Rb, Th, U etc) usually show
high correlation with the terrigenous material, and
only Sr is related to carbonate content in the sedimen-
tary rocks studied (Kaminskas 2001a, 2001b, 2002). The
error rate bars presented in Figure 4 suggest that neit-
her k-NN nor SIMCA yield satisfactory results in pre-
dicting rock types. Almost the same pattern of the error
rate bars for the trace elements (Fig. 4) is recognized for
the major elements (Fig. 3) as well. In the mudstone the
lowest error rate ranges from 0.5 to 3.6%. Dolostone
could be "recognized" with an error of 4.6% by ANN,
and 22.7% by k-NN (Fig. 4). Accordingly, for the trace
element data only the ANN and LDA managed to clas-
sify all the rock types studied, except limestone dolomi-
tic "clayey" and limestone "clayey" dolomitic. The k-NN
and SIMCA show extremely poor results when hand-
ling trace element data.

The use of trace elements in classifying sedimentary
rocks is a very important feature. ANN and LDA
demonstrate that even if only trace element data are
available a reasonably good classification is still possible.

Discussion and conclusions
We applied ANN, k-NN, LDA and SIMCA in order to
analyse the rock classification based on mineralogical
information and to compare the performance of these
techniques. It was important to assess which of the
techniques that would enable minimum misclassifica-
tion. The results demonstrate that classification is not
only dependent on the trace or major elements that
were taken into account (not discussed here), but that
they are also dependent on the statistical pattern-recog-
nition technique that is chosen.

The comparison of the statistical pattern-recognition
techniques used in this study has shown that not only
the technique for classification should be used with
care but also that attention must be paid to the objects
(rock types) being classified. It was also noticed that
not only the major elements, as is usually the case,
could be used in the "recognition" of certain rock type.
Trace elements could also be used successfully and
readily handle the same tasks.

Prior to applying a statistical pattern-recognition tech-
nique the mineralogical composition of the formation
should be investigated. As described above both ANN
and LDA could be successfully applied for carbonaceous
sedimentary rock classification, except for some limes-
tone types. Moreover, ANN is a more flexible technique,
and results could be improved by additional "learning"
and modification of the network configuration.

Several conclusions can be made from the results obtai-
ned in this study. Unfortunately, the comparison of the
pattern-recognition techniques has demonstrated that
classification success depends not only on variables
involved in calculations but also on the pattern recog-
nition technique chosen. Since no strict statistical
assumptions, e.g. multivariate normality of the data-
sets, is required in the artificial neural networks this
procedure seems to be one of the optimum techniques
for geochemical classification of the sedimentary rocks.
Linear discriminant analysis could also be utilized, but
the results obtained by this technique are very depen-
dent on the data structure (multivariate normality of
the datasets). The k-nearest neighbour technique and
soft independent modelling of class analogy were not
found to produce optimum error rates when compared
to artificial neural networks and linear discriminant
analysis. The conclusion is that the application of the
artificial neural network technique for distinguishing
Silurian rock types on the basis of geochemical data
seems to be the best choice among the techniques com-
pared.
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