The D₃ fold mechanism in the Joma mine district, Leipikvattnet Nappe, Nord-Trøndelag, Norway

BRIAN MARSHALL

The Joma Cu-Zn orebody lies within the Leipikvattnet Nappe, part of the Kåli Nappe system within the central Scandinavian Caledonides (Kollung 1979; Reinsbakken & Stephens 1986), some 250 km NE of Trondheim (Fig. 1). Marshall et al. (1987), Odling (1988) and Marshall (1990) discussed the structural evolution of the Joma orebody and its immediate hostrocks; Odling (1989) presented the structural history of a larger portion of the nappe centred on the Joma deposit. Although these works are substantially in agreement regarding the sequence of deformation events, Odling (1989) and Marshall (1990) differed in relation to the fold mechanism advocated for the D₃ event.

Odling (1989) examined the redistribution of D₂ linear fabric elements about the D₃ hinge line in terms of what she presented as two end-member folding mechanisms; concentric folding (in fact a geometric rather than mechanical term) and simple shear folding (a mechanism which yields perfectly similar fold geometry). She stated (1989, fig. 11) that the redistribution pattern most closely approximated the great-circle geometry typical of simple shear folding, rather than the small-circle geometry associated with the concentric model (Fig. 2). Odling (1989) therefore concluded that folding in D₃ developed by a dominantly simple shear mechanism.

Marshall (1990) analysed the mesoscale structure of Joma mine. He drew attention to the pre-D₃ non-linear distribution of the D₂ linear fabric elements, and to the non-plane form surfaces in which D₃ folds developed. This was to explain irregular aspects of the geometry of D₂ linear elements as redistributed by D₃. Marshall (1990) noted, however, that D₂ linear elements from surface exposures (derived from Odling 1984, fig. 3) could best be satisfied by a large small-circle redistribution pattern centred on Fₛ and modified by inhomogeneous pure shear. He suggested that this interpretation was consistent with the D₃ fold style (e.g. Marshall & Gilligan 1989 fig. 3; Marshall 1990, fig. 9C, D) which in no way approached the class 2 geometry (Ramsay 1967) indicative of shear, slip or passive folding (e.g. Donath & Parker 1964; Ramsay 1967).

The present contribution will follow up this difference in interpretation by considering the relationship between perfect similar fold geometry and the across-layer simple shear fold mechanism, and presenting the observed D₃ fold geometry in the Joma district.

Fold mechanism and geometry

The geometry of perfect similar folds can only be explained by across-layer progressive inhomogeneous simple shear, with or without a uniform homogeneous strain (Ramsay 1967, p. 422). The kinematic properties of this mechanism require that an earlier lineation be redistributed within a great-circle which, in the general case, is oblique to the new hinge line and is defined by the original orientation of the lineation and the slip direction (e.g. Ramsay 1960; Turner & Weiss 1963, pp. 482–485).

These relationships have resulted in field-derived great-circle redistribution patterns being equated with shear folding and similar fold geometry (e.g. Turner & Weiss 1963 p. 486; Donath & Parker 1964). But this is a misconception. First, within the limits of field data contoured on an equal-area stereographic net, a redistribution pattern approximating a great-circle can result from fold mechanisms other than across-layer inhomogeneous simple shear (Turner & Weiss 1963, p. 487; Ramsay 1967, pp. 430–436). Second, few natural folds have perfect class 2 similar geometry, and even those which do approximate this form may be explained with-
out recourse to progressive flow or slip parallel to their axial surfaces (Turner & Weiss 1963, p. 487; Ramsay 1967, p. 434; Hobbs et al. 1976 pp. 195–199; but also note the model advocated by Hudleston 1977). In essence, apparent great-circle redistribution patterns of contoured linear elements neither require perfect similar geometry nor prove simple shear folding.

Fold geometry in the Joma district

Based on dip isogon analysis (Fig. 3), mesoscale F₃ folds from various multilayers at and in the vicinity of Joma Mine have geometries ranging from class 1C (competent layers) to class 3 (incompetent layers). Such geometries are consistent with modified-parallel fold styles and initiate through buckling process (e.g. Ramsay 1967, pp. 431–432; Hobbs et al. 1976, p. 195). Further, because the folds have limited persistence within the axial surface normal to the hingeline, they do not even approximate similar geometry.

The same conclusion may be reached by examining the regional F₃ Joma Synform (e.g. Kollung 1979; Roberts 1979; Marshall et al. 1987; Odling 1988, 1989; Marshall 1990) (Fig. 4). The en echelon axial surface traces, the apparent class 1C/3 geometry in plan and profile (less obvious), and the competence contrast under conditions
of low grade metamorphism between massive and pillowed greenstone and graphitic and quartzose phyllites, all oppose true similar geometry produced by across-layer inhomogeneous simple shear.

Redistribution geometry in the Joma district

Three aspects relating to redistribution geometry of the D₃ linear elements in the Joma district have bearing on the D₃ fold mechanism.

1. The pre-D₃ orientation of D₂ linear elements is uncertain (Odling 1989). A shallow NW plunge is dominant in regions where D₁ influence is deemed minimal, but evidence exists (Marshall 1990) for a pre-D₃ great-circle dispersion of D₂ linear elements. Given these factors, plus the inconsistent orientation of D₁ hinge lines (Marshall 1990), the redistribution geometry of D₂ about D₃ should not be interpreted as a simple great-circle pattern.

2. Many natural folds displaying combinations of classes (e.g. IC/3), result from buckling instability followed by flattening and simple shear modifications parallel to the axial surface (e.g. Turner & Weiss 1963, pp. 487–490; Donath & Parker 1964; Ramsay 1967, pp. 482–486). In particular, Ramsay portrayed various combinations of flexural slip and simple shear that might explain Odling’s results (1989, fig. 11), provided that ‘a’ (Fig. 2) constituted the shear direction. However, evidence supporting this shear direction (such as elongation lineation paralleling ‘a’ in the D₃ axial surfaces) has not been reported (e.g. Olsen 1980; Marshall et al. 1987; Odling 1988, 1989; Marshall 1990), and, in contrast with what might be expected for a simple shear mechanism, the D₁ axial surface foliation is rarely penetrative (Odling 1989).

3. Redistribution data from two F₃ mesofolds in green-schist from Joma mine, which falls within Odling’s critical zone B (1989, figs. 9 and 11), do not directly differentiate between buckling and inhomogeneous simple shear mechanisms (Fig. 5). This is because an approximate 90° relationship existed at mesoscale between D₂ and D₃ linear elements at this locality. However, should a simple shear mechanism be invoked, the redistribution patterns differ significantly from Odling’s regional data in relation to the possible shear direction (cf. Figs. 2 and 5). In addition, because the two folds lack a penetrative axial surface foliation and possess a near-concentric geometry, it should be noted that they are incompatible with an inhomogeneous simple shear model.

The foregoing items strongly suggest that a D₃ fold mechanism dominated by across-layer inhomogeneous simple shear is inapplicable in the Joma district.

Discussion and conclusions

Various combinations of non-commutative flexural slip and homogeneous flattening, flexural slip and across-layer simple shear, and buckling instability or across-layer simple shear with superimposed progressive inhomogeneous contraction, can all yield folds of approximately similar composite geometry, and can redistribute earlier rectilinear elements into near-great-circle patterns (Ramsay 1967). Careful selection of shear directions and strain axis orientations for the various components of strain enables any of these complex fold models to explain Odling’s (1989) data, particularly when the geometries of the pre-D₃ form surface and linear elements are considered. However Figs. 2, 3 and 4 allow an interpretation which is in keeping with the competence contrasts and pre-D₃ geometry of the main lithological units. The regional sequence comprises intercalations of graphitic and quartz-rich phyllites, thin-bedded quartzites, and massive, pillowed and tuffaceous greenstones. Compared with the greenstones, the phyllites and thin-bedded quartzites were less competent and thereby weakly exhibit class 3 geometry. Within these less competent portions of the sequence, regional macrofolds could have involved a significant component of progressive inhomogeneous contraction (see Ramsay 1967, p. 484). This is despite mesofolds in thin competent layers within the same portion of the sequence having class IC geometry and being initiated by bucking. Since progressive inhomogeneous contraction redistributes lineations along complex loci akin to an incomplete great-circle pattern (Ramsay 1967, p. 485), D₂ linear elements from less competent portions of the Joma sequence could
ISOGONS: A_1, $20-40-60^\circ$

A_2, A_3 $25-50-70^\circ$

ISOGONS: B, C, D $25-50-70^\circ$
yield such a distribution. Thus, provided that a substantial proportion of the D2 data were derived from less competent sources (as is implied by Odling 1984, 1989, pers. comm. 1991), it is possible to reconcile an approximate great-circle redistribution pattern with a fold style requiring buckling processes.

Extending the interpretation further, strain X and ‘a’ for the components of the inhomogeneous contraction throughout much of the region would have been approximately normal to the SW plunging regional F3 hinge line. However, in zone B (Odling 1989, figs. 9, 11; Fig. 4), although strain X and ‘a’ remained constantly oriented, the F3 hinge line reversed its plunge, this probably being due to a local variation in form surface orientation (an interpretation also made by Odling 1989), since zone B
Fig. 5. Lambert equal-area stereograms of two F3 mesofolds and their redistributed D2 linear elements (dots); the best fit small-circle (continuous) and great-circle (dashed) redistribution loci are indicated.

A. Small circle redistribution path for \(P \) buckled around \(F_3 \)

B. Great circle approximating the redistributed (dashed) \(D_2 \) linear elements

C. Possible redistribution trajectories (arrows) for inhomogeneous pure strain of loci from B – possible new loci shown by heavy dashes.

D. Great-circle approximating the new loci from C.
centres upon an F₂ macrofold preserved within a lenticular body of greenstone.

The above interpretation is presented on a series of equal-area stereographic projections (Fig. 6). S₂ and the D₂ linear elements are folded by an initial component of SE-verging asymmetric buckling (Fig. 6A), as would have evolved in the competent layers and been transferred into the incompetent layers. The resulting small-circle distribution of D₂ linear elements is modified in the incompetent layers by a progressive inhomogeneous contraction which, in accordance with Ramsay (1967, pp. 484–485), is imposed as an inhomogeneous simple shear parallel to the fold axial surface (Fig. 6B) followed by an inhomogeneous pure strain with Z normal to the axial surface (Fig. 6C). Again following Ramsay (1967, p. 485), strain X is made to parallel the slip direction 'a' of the shear component. The pattern of D₂ linear elements arising from this deformation can be approximated by a great-circle of similar orientation to that in Fig. 6 (Fig. 6D). Partly based on Odling (1989) and Marshall (1990), assumptions have been made regarding the pre-D₃ orientations of S₂ and D₂ linear elements, and the orientations of F₃, S₃, 'a' and strain X. The selected values result in the D₃ redistribution of D₂ linear elements being consistent with the field relationships. Nevertheless, the result is moderately insensitive to reasonable variations of the selected values, particularly since, by its very nature, a progressive inhomogeneous contraction cannot be specified in detail.

The D₃ fold style and the great-circle redistribution geometry at Joma may be reconciled by differing combinations of buckling and inhomogeneous contraction in the competent and less competent portions of the regional sequence. The less competent portions were dominated by inhomogeneous contraction such that D₂ linear elements rotated towards an approximate great-circle pattern. The more competent portions were dominated by flexural processes and underwent little modification by inhomogeneous contraction. Only where the angle between the D₃ hingeline and D₂ linear elements was substantially less than 90°, was it possible to appreciate the role of inhomogeneous contraction. There is no justification, either generally or at Joma, for unquestioningly equating an approximate great-circle redistribution of linear elements with a fold mechanism involving across-layer simple shear.

Understanding the D₃ fold mechanism has bearing on kinematic interpretation within the Upper Allochthon (Fig. 1) of the central Scandinavian Caledonides (e.g. see the discussion in Odling 1989). It also enables a better understanding of remobilization geometry (and thereby development needs) within the Joma orebody.

Acknowledgements. – Work in the Joma region was made possible by Professor Frank Vokes (University of Trondheim) and Arve Haugen (Grong Gruber A./S). A travel grant was provided by the University of Technology, Sydney. The typescript was critically read by John V. Smith and Alan D. Giles, and benefited from thorough reviews by NGT referees A. G. Milnes, H. Fossen, and N. E. Odling.

Manuscript received December 1990

References

