LATTICE CONSTANTS OF THE CUPROUS AND SILVER HALIDES

RY

TOM. BARTH AND GULBRAND LUNDE

An essential idea, established by W. L. BRAGG, is that it should be possible to attribute to every chemical atom, considered as a sphere, a constant radius. This hypothesis of "constant atomic radii" has shown itself to be of great importance in the investigations of new types of structures.

The atomic radii are calculated from the known simple structures, by using an arbitrary chosen starting-point, as has actually been done by different authors.

It should be noticed, however, that the radii calculated in this way for heteropolar compounds give the value of the radius of the *ion* and hence it will differ from that of the *atom*.

In comparing the different atomic radii it should only be permitted to compare the atoms under identical conditions, reached by comparisons between "the true atomic radii" defined as the radii of the atoms when being outside the influence of an exterior field of force, a condition approximately reached in the gaseous state.

Further it should be noticed that the atoms frequently occur with different valencies and therefore with different radii of the ions, which is especially salient in compounds like the metals of the sixth and seventh groups of the periodic system, these metals also being able to form negative ions.

On account of these facts there exists in several compounds an apparently great disagreement from the hypothesis of constant atomic radii.

¹ Cfr. Norsk Geol. Tidsskr. 8, 267 (1925).

Moreover there occur less salient discrepancies, on account of a greater or lesser deformation of the ions. As shown by Fajans the anions may be arranged in a series of increasing deformability of the ions:

$$F^-\langle NO_8 \rangle \langle SO_4^- \rangle \langle CO_3 \rangle \langle Cl \rangle \langle Br^- \langle I^- \langle CN^- \langle O \rangle \rangle \langle Se \rangle$$

He has also shown that the metals with the peripheric electron orbits arranged according to the type of the cuprous ion (eighteen peripheric electrons) affect a greater deformation of the anions than the metals with noble gas orbits.

This difference in the deformation is so great that it may often be observed in the lattice spacings (e. g. of the monohalides).

Thus the differences between the radii of the chloride, bromide and iodide ions of the alkali halides are greater than the corresponding differences between the cuprous, thallous and silver halides.

The data from the X-ray analyses hitherto carried out on the monohalides of the heavy metals are meagre; thus many of the reflections demanded by the zinc sulfide grouping have never been observed on photographs of the cuprous halides. Moreover, the determinations of the lattice spacings are partly inconsistent.

It would therefore be of great importance to determine the lattice spacings of these compounds with a higher degree of accuracy.

For this purpose the method of WYCKOFF¹ was used. The principles of this method are briefly the following: A Debye-Scherrer photograph is made of a sample containing an intimately mixed powder composed of the substance to be determined and sodium chloride, the latter thus serving as a standard. In this way there occur lines from sodium chloride side by side with lines from the other substance. The lattice spacing of sodium chloride a = 5,628 Å serves as an accurate standard for X-ray measurements. From this figure it is possible to compute the theoretical reflection angles of the different planes of the sodium chloride lattice for different radiations. For $Cu K_{\alpha} = 1,539 \text{ Å}$, the figures quoted in the tables are obtained.

¹ Zeitschr. f. Krist. 59, 55 (1923).

By measuring the differences between the outer edges of the reflection lines from the substance and the nearest sodium chloride lines, it is easy to get an accurate determination of the reflecting angles, from the planes of the substance. When using a camera with a diameter D=58 mm., the reflection angle φ may in this way be determined with a maximum error of $\pm 0.03^\circ$, provided the concerning reflection line from the substance has approximately the same intensity as the sodium chloride line referred to. Working in this way the usual sources of error are omitted (errors depending on divergence of the X ray beam, absorbtion, excentricity of the samples, etc.). In the films of the pure substances the reflection angle φ of each line was found from the formula

$$\varphi = \frac{90 (2 d \quad s)}{2 \pi r} \quad K$$

where 2d is the distance between two corresponding lines, s the diameter of the sample, r the radius of the camera and K a correction term, empirically determined for each film. Apparatus, procedure and calculation of the films are described in a previous paper. A copper target was used.

In the last column of the tables, $\sin^2 \varphi$ is quoted as a product of the common factor, X, and the sum of the square of the indices, $\Sigma h^2 = q$. By the calculation of the length of the edge of the unit cube, the different figures for X were attributed a value proportional to q. (Concerning the reason for this procedure we may refer to our previous paper²)

The intensities quoted in the tables were computed from the usual formula

$$I = \frac{(A^2 + B^2)j}{\sum h^2} \cdot \frac{1 + \cos^2 2 \, \varphi}{2 \cos \varphi}$$

 $(A^2 + B^2)$ being the structure factor, j the frequency of the reflecting planes of the form.

The salts used for the following determinations were made by precipitation of pure, water-soluble salts.

¹ Cfr. V. M. GOLDSCHMIDT, L. THOMASSEN; Vid. Selsk. Skr. I, 1923, nr. 2.

² Zeitschr. f. physikal. Chemie 117, 478 (1925).

Table 2. Cuprous Chloride + Sodium Chloride.		$\sin^2 q = \Sigma h^2 \cdot X$	3 · 0,01656	3 · 0,0202S			$8 \cdot 0,01658$		8 · 0,02027	co nc dence	co nc dence		$16 \cdot 0,02020$		$19 \cdot 0,02022$		$24 \cdot 0,02029$	$27 \cdot 0,02025$		$32 \cdot 0,02026$		35 · 0,02028	
ride + S	in degrees	CuCl obs.	12,88	14,28			21,36		23,75				34,65		38,30		44,25	47,69		53,63		57,41	
ous Chlo	q in de	NaCl theor.			15,87			22,75			28,27	33,16		37,70		42,06			50,67		55,12		58,85
2. Cupre	Indices	CuCl	β 1111	Ξ			β 220		220	β311	311		400		331		422	511		440		531	
Table 2	Ind	NaCl			200	β 220		220		β 222	222	400		420		422			440		600)	`	620
	Intensities	calc		10	5,0		6,		7	0,2		2	4		0,2	9	•	4	2	9			
4;	Inten	obs.		10	-		10		œ	-		3	4		į	9	•	4	2	9	• حرب		
Table 1. Cuprous Chloride.		$\sin^2 q_{\parallel} = \Sigma h^2 \cdot X$		$3 \cdot 0,02020$	$4 \cdot 0,02030$		$8 \cdot 0,02030$		11 · 0,02035			$16 \cdot 0,02021$	$19 \cdot 0,02025$			$24 \cdot 0,02028$	00000	21 · 0,02026	$32 \cdot 0,02026$	$35 \cdot 0,02022$	$\sin^2 q = \Sigma h^2 \cdot 0,02026 \ a_0 = 5,406 \ \text{Å}$		
Table 1. (q in degrees	12,83	14,26	16,56	21,19	23,77	25,11	28,23		30,85	34,66	38,33	38,77		44,22	Ç	47,69	53,63	57,30	$\sin^2 q = \Sigma h^2.$		
	And the state of t	Indices	β 111	111	200	β 220	220	β 311	311	222	β 400	400	331	β 422	420	422	511)	333)	440	531			

eta rad at on: s n² q = $\Sigma h^2 \cdot 0.01657$ $a_0 = 5.40$ Å

 $\sin^2 q_0 = \Sigma h^2 \cdot 0,020250 \ \epsilon_0 = 5,407 \ \text{Å}$

Table 4. Cuprous Bromide + Sodium Chloride.	q in degrees	Cl $CuBr$ $\sin^2 q = \Sigma h^2 \cdot X$ or. obs.	eoine dence	eo ne dence		15,87	coinc dence	22,75 co nc dence	23,84 11 · 0,01485	26,69 11 · 0,01834		32,23 19 0,01496	32,73 16 · 0,01827		36,21 19 · 0,01836	36,75 24 0,01492		41,60 24 · 0,01837		44,76 27 · 0,01836		53,32 35 0,01838	12	58.90 40 · 0.01833	
ous E	<i>b</i>	NaCl theor.				15,		22,			28,27			33,			37,70		42,06		50,67		55,12		
. Cupr	seo	CuBr	β 1111	. 111			β 220	220	β 311	311		β 331	400		331	β 422		422		511		531		620	
Table 4	Indices	NaCl	β 111	1111	β 200	200	β 220	220			222			400			420		422		440		600)		
	sities	calc.		10	0,2		6		9		2	8	0,1	7	,	n	2	7	•	0,1	9				
u;	Intensities	obs.		10			6		7		2	4	1	Ŋ		4	7	S		İ	4			•	_
Cuprous Bromide.		$\sin^2 \varphi = \Sigma h^2 \cdot X$		3 · 0,01830			8 · 0,01831		11 · 0,01828		16.0,01822	19 · 0,01828		24 · 0,01831	00100	27 · 0,01833	32 · 0,01828	35 · 0,01832			40 · 0,01829			909 7 - 100100	$-n^{-1}$. U, 01851 $a_0 = 5,000$ A
Table 3.	The state of the s	q in degrees	12,42	13,66		20,27	22,49	23,90	26,64		32,68	36,10		41,53	1.00	44,/0	49,85	53,21			58,80			8.1.2	SIN C LINE
		Indices	β 1111	1111	200	β 220	220	β 311	311	222	400	331	420	422	511)	333	440	531	442)	€000	620			-	

 $\sin^2 q = -2h^2 \cdot 0,018346 \ \mathbf{a_0} = \mathbf{5,681} \ \mathbf{\hat{A}}$ β radiat on: s n² $q = -2h^2 \cdot 0,01492 \ \mathbf{a_0} = 5,69 \ \mathbf{\hat{A}}$

	Table 5.	Cuprous Iodide			Table 6.		Cuprous Iodide +		Sodium Chloride.
			Inter	Intensities	Indi	Indices	b ni p	in degrees	A STEEL COLOR OF THE STEEL STE
Indices	q in degrees	$\sin^2 q = \Sigma h^2 \cdot X$	obs.	calc.	NaCl	CuJ	NaCl theor.	CuJ obs.	$\sin^2 q = \Sigma h^2 \cdot X$
β 111	11,34					β 1111		11,50	3 · 0,01325
=======================================	12,73	3 · 0,01618	w	10				12,69	3 · 0,01609
200	14,71	4 · 0.01620	-	-	200		15,87		
β 220	18,87					β 220		19,00	8 · 0,01325
220	21,02	8 · 0,01608	10	6.		220		21,11	$8 \cdot 0,01621$
β 311	22,33					β311		22,50	11 · 0,01331
311	25,01	11 · 0,01625	6	∞	220		22,75		
222	26,16	12 · 0,01612	1	0,5		311		24,94	11 · 0,01616
β 400	27,34				222		28,27		
β 331	30,01					400		30,66	$16 \cdot 0,01625$
400	30,60	$16 \cdot 0.01620$	8	2	400		33,16		
331	33,67	19 · 0,01618	Ŋ	4		331		33,66	19 · 0,01616
β 422	34,17				420		37,70		
420	34,69	20 · 0,01620	8	-		422		38,60	$24 \cdot 0.01622$
β 333 β	36,65					511) 333		41,43	27 · 0,01622
422	38,63	24 · 0 01623	10	īV	422		42,06		
β 440	40,51					440		46,09	32 · 0,01622
333)	71.75	27 . 0.01623	œ	_		531		48,91	35 · 0,01622
511)	CF.11+	0,010,0	0	٠	٠	(009 (77)		49,77	36 · 0,01619
β 531	42,84					447)			
440	46,10	32 · 0,01622	w	2	440		50,67		
β 620	46,50					620		53,62	$40 \cdot 0,01617$
531	48,93	35 · 0,01623	10	w	600) 443		55,12		
600 (442)	49,77	36 · 0,01619	4	5,0	447)	533		56,56	43 · 0,01619
620	53,63	40 · 0,01623	∞	4		622		57,61	$44 \cdot 0.01621$
533	56,55	43 · 0,01619	9	ഹ		sin ² q	$\Sigma h^2 \cdot 0.016193 \mathbf{a_0} -$		6,047 Å
622	57 59	44 · 0,01619	8	0,5		/ radiation :	h radiation: $\sin^2 q = \frac{2h^2 \cdot 0.01328}{4} a_0 = 6.03 \text{ Å}$	$h^2 \cdot 0.01328 \ a_0$	n=6.03 A
	$\sin^2 q = \Sigma h^2$	$\Sigma h^2 \cdot 0.016196 \ a_0 = 6.046 \ \text{Å}$	6 Å						

Silver Chloride	
Silve	
Table 8.	
Chloride.	
Silver	
Table 7.	

	Table 7.	Silver Chloride.			Table 8.		er Chlori	de + So	Silver Chloride + Sodium Chloride.	
			Inten	Intensities	Indi	Indices	q in d	q in degrees		
Indices	η in degrees	$\sin^2 q = 2h^2 \cdot X$	obs.	calc.	NaCl	AgCl	NaCl theor.	AgCl obs.	$\sin^2 q = \Sigma h^2 \cdot X$	
111	13,83	3 · 0,01902	7	ю	111	111			coinc dence	
β 200 200	14,25 16,07	4 · 0,01918	10	10	200	7, 200	15,87		coincidence	
β 220 220	20,64	8.001031	α		027 (β 220	27 75	20,75	8 · 0,01569	
β311	24,50	10010,0	0	·	833	220	5,77	23,15	8 · 0,019 32	
β 222	25,65					/311 /3222		24,52 25,74	11 · 0,01566	
311	27,45	11 · 0,01934	9	8		311		27,47	11 · 0,01934	
222 420 400	28,77	12 · 0,01930	9 9	4 m	222	222	28,27	28.74	12 · 0.01927	
331	37,36	19 · 0,01936	0	· -	400	007	33,16	, , , ,	, ,	
422, 420	38,58		∞	7		400 // 420		33,08 34,16	10 · 0,019 <i>22</i> 20 · 0,01576	
β333) β511	41,05				β 422 420	331	37,70	37,25	coincidence	
422	43,03	24 · 0,01942	7	9	422	420	42.06	38,32	20 · 0,01922	
333)	46,32	27 · 0,01936	4	-	. <u> </u>	422	45.27	4286	24 · 0,01928	
440	51,78	32 · 0,01925	4	7		333)	1	46.21	27 · 0.01930	
531	55,22	35 · 0,01927	4	2		511 J 8 600 J		0 0		
600 	56,41	36 · 0,01927	10	∞	440	β 442 j	50.67	48,87	36 ' 0,015/6	
_			•	_	F	440	0,00	51,72	32 · 0,01926	
	$\sin^z q = \sum h^z$.	$\sin^2q = 2h^2 \cdot 0,01930 \ a_0 = 5,539 \ A$	4		600 (55,12			
						600 \ 442 \		56,32	36 · 0,01924	
					620	620	59,85	61,35	40 · 0,01925	
					•					

 $\sin^2 q = \Sigma h^2 \cdot 0.019260 \ \mathbf{a}_0 = \mathbf{5.545} \ \mathbf{\hat{A}}$ ρ radiation: $\sin^2 q = \Sigma h^2 \cdot 0.01574 \ a_0 = 5.54 \ \hat{A}$

Bromide.	
Silver	
Table 9.	

												-														-	
Table 10. Silver Bromide + Sodium Chloride.	An and separately individual and the second separately and the second se	$\sin^2 q = \Sigma h^2 \cdot X$	coincidence	$4 \cdot 0,01796$		8 · 0,01457	$8 \cdot 0,01785$		12 0,01449		$12 \cdot 0,01795$		$16 \cdot 0,01791$		$20 \cdot 0,01786$		$24 \cdot 0,01789$		32 · 0,01789		36 · 0,01789			$40 \cdot 0,01787$		$44 \cdot 0,01786$	3,755 Å 0 == 5,77 Å
ide + So	degrees	AgBr obs.		15,55		19,96	22 20		24,64		27,65		32,36		36,70		40,95		49,18		53,38			57,71	;	62,44	$\Sigma h^2 \cdot 0,017879 \mathbf{a}_0 = 5,755 \mathbf{\hat{A}}$ $\sin^2 q = \Sigma h^2 \cdot 0,01452 a_0 = 5,77$
er Bromi	q in de	NaCl theor.			15,87			22,75				28,27		33,16		37,70		42,06		50,67		55.12	i ; ; ;	1	58,85	_	$\sin^2q = -2\hbar^2 \cdot 0,017879 {\bf a}_0 = {\bf 5,755} {\bf \mathring{A}}$ μ radiation: $\sin^2q = 2\hbar^2 \cdot 0,01452 a_0 = 5,77$
10. Silvo	ces	AgBr	β 200	500		β' 220	220		β 222		222		400		420		422		440		600)			620		622	$\sin^2 q$ = β radiation:
Table	Indices	NaCl	ß 200	_	200			220		β 222		222		400		420		422		440		(009	442)	9	029		
	Intensities	calc.	0.2		10		G,		0 1	4		2		0,1		9	5,5		,	0,1		8	0,1	9	: 1	w	
	Inten	obs.			10		10		$\overline{\lor}$	w		8			_	7	9					2	-	9) 1	Ŋ	
Silver Bromide.		$\sin^2 q = \Sigma h^2 \cdot X$			4 · 0,01779		8 · 0,01787			12 · 0,01795		16 · 0,01793				20 · 0.01789	24 · 0,01787					32 · 0 01787		36 · 0 01790		40 · 0,01787	$\sin^2 q - \Sigma h^2 \cdot 0.01788 \ a_0 = 5.755 \ \text{Å}$
Table 9.	Company of the Compan	arphi in degrees		13,97	15,47	19,95	22 21	24,82		27,65	28,85	32.39	32,78		36,17	36,73	40,92	43 14			45,61	49,16		53.40	2:(2)	57,74	$\sin^2 q - \Sigma h^2.$
		Indices	111	β 200	200	β 220	220	β 222	311	222	β 400	400	β 420	331	β 422	420	422	β 440	511)	333 Ĵ	β 442 β 600 β	440	531	442)	(009	620	

Iodide.	
Silver	
=	
e	
Tab	

Table 12. Silver Iodide + Sodium Chloride.

	$\sin^2 q = \Sigma h^2 \cdot \lambda$	3 · 0,01413		8 · 0,01147	$8 \cdot 0,01401$		$11 \cdot 0,01405$	coincidence	$19 \cdot 0,01401$		$24 \cdot 0,01399$		27 · 0,01404	coincidence	$35 \cdot 0.01407$, 101 Å	h_1 h_2 h_3 h_4	:				
egrees	AgJ obs.	11,88		17 64	19 56		23,15		31,06		35,46		38 00		44 56		9 - 8 950	2 · 0.01147 a					
arphi in degrees	NaCl theor.		15,87			22,75		28,27		33 16		37,70		42,06		50,67	$\frac{1}{8}$	Sim $\psi = -n + 0.014000$ a ₀ 0.451 A B radiation : sin ² $w = -2h^2 \cdot 0.01147$ a ₀ 6.49 Å	7				
Indices	AgJ	111		β 220	220		311	400	331		422		511	440	531		61 61 62 63 64 64 64 64 64 64 64 64 64 64 64 64 64	Sill y					
lnd	NaCl		200			220		222		400		420		422									
Intensities	calc.	10	0,1		10	7	0,1	2	4	0,1	9		m	7	4	``	_, √_	8	2	0,1	_	7	
Inten	ops.	9	1		10	6		-	8	1	4	•	m	0	ß		1	0	2	I	-	3	φ.
	$\sin^2 q = \Sigma h^2 \cdot X$	3 · 0,01392			8 · 0,01402	11 · 0,01394		16 · 0,01394	19 · 0,01401		24 · 0,01403		27.0,01396	32 · 0,01395	35 · 0,01401			40 · 0,01411	43 · 0,01411		48 · 0,01412	51 · 0,01402	$\sin^2 q = \Sigma h^3 \cdot 0.014035 \ a_0 = 6.495 \ \text{Å}$
	η in degrees	11,79		17,55	19,57	23,07		28,17	31,06		35,57		37,88	41,92	44,54			48,72	51,15		54,80	57, 8	$\sin^2q = \Sigma h^2$. (
	Indices	111	200	β 220	220	311	222	400	331	420	422	333)	511)	440	531	(009	422)	620	533	622	444	711	

Cuprous Chloride, CuCl. X-ray investigations on this salt have been carried out by R. W. G. WYCKOFF¹ and E. W. Posn-JAC and by W. P. DAVEY.² The zinc sulfide grouping was stated. The length of the edge of the unit cube was given to $a = 5,49 \, \mathring{A}$, and $a = 5,36 \, \mathring{A}$ respectively.

The new measurements gave a = 5,407 Å.

Cuprous Bromide, CuBr. This compound has been investigated by the same authors. The zinc sulfide arrangement was stated, and the lattice constant found to be a = 5.82 Å and 5.75 Å respectively.

The new measurements gave a = 5,681 Å.

Cuprous Iodide, CuI. Three investigations have been made of this crystal. The two said authors give $a=6,10\,\text{Å}$ and $6,07\,\text{Å}$ resp. The third investigation was made upon the mineral marshite by G. Aminoff. He states $a=6,02\,\text{Å}$. The observed intensities agree with the zinc sulfide grouping.

The new measurements gave a = 6,047 Å.

For the three said cuprous halides the observed intensities of the reflection lines are in good agreement with those calculated for the zinc sulfide grouping (cfr. table 1, 3, 5).

Silver Chloride, AgCl. The following values have been published for the length of the edge of the unit cube of this salt, crystalizing in the sodium chloride arrangement; W. P. Davey (loc. cit.) states $a = 5.52 \, \text{Å}$, and R. B. WILSEY⁴ gives $a = 5.540 \, \text{Å}$.

The new measurements gave a = 5,545 Å in close agreement with WILSEY'S value.

Silver Bromide, AgBr. This salt has also been investigated by W. P. DAVEY (loc. cit.) and by R. B. WILSEY (loc. cit.). The values for the lattice constant given by these authors are a=5,78~Å and 5,768~Å resp.

The new measurements lead to a = 5,755 Å in good agreement with WILSEY's data.

The observed intensities for the two said silver halides agree well with those calculated for the sodium chloride grouping (cfr. table 7, 9).

¹ Journ. Am. Chem. Soc. 44, 30, (1922).

² Phys. Rev. 19, 248, (1922).

³ Geol. För. Förh. 44, 444, (1922).

⁴ Phil. Mag., 46, 487, (1923).

Silver Iodide, AgI. It has been shown that artificial silver iodide at an ordinary temperature is mostly met with as a mixture of hexagonal and cubic crystals, assigned to the zinc oxide and zinc sulfide grouping respectively.

According to R. B. WILSEY (loc. cit.) the lattice constant of the cubic crystal is given to a=6,493~Å.

The new measurements gave a = 6,491 Å, in close agreement with the result obtained by WILSEY. No additional lines from the hexagonal modification were observed on the films used for these measurements. As seen from table 11 the intensities are in good accordance with the zinc sulfide grouping.

Summary.

The lattice spacings of the cuprous and silver halides were redetermined. The values obtained for the three silver halides are in close agreement with those published by R. B. WILSEY (loc. cit.). There is good agreement between observed and calculated intensities.

	Structure ¹	Lattice Constant
CuCl	zinc sulfide [4 b, 4 d]	$a_0 = 5,407 \text{ Å}$
CuBr	zinc sulfide [4 b, 4 d]	$a_0 = 5,681 \text{ Å}$
CuI	zinc sulfide [4 b, 4 d]	$a_0 = 6,047 \text{ Å}$
AgCl	sodium chloride [4 b, 4 c]	$a_0 = 5,545 \text{ Å}$
AgBr	sodium chloride [4 b, 4 c]	$a_0 = 5,755 \text{ Å}$
AgI	zinc sulfide [4 b, 4 d]	$a_0 = 6,491 \text{ Å}$

Shortest Atomic Distances.

	Cl'		Br'		J'
Cu [·]	2,341	0,11 9	2,460	0,158	2,618
	0,432		0,418		0,193
Ag.	2,773	0,105	2,878	÷ 0,067	2,811

In the preceding table the shortest atomic distances and their differences are calculated. The shortest atomic distance for Ag J is not comparable with those of the two other silver halides, on account of different structures.

Mineralogical Institute of the University
Oslo, Febr. 26th, 1926.

Printed Mars 22nd, 1926.

¹ The symboles correspond to WYCKOFF's tables (The Analytical Expression of the Results of the Theory of Space-Groups, Washington, 1922.)