$3^{\text {rd }}$ Nordic Chemistry Olympiad

Theoretical Problems

18 ${ }^{\text {th }}$ July 2018
Oslo, Norway

Instructions

- Write your name and country code on all pages.
- The test booklet consists of 6 tasks and 29 pages.
- You have 5 hours for the examination. Do not start until the "START" signal is given.
- Use only the ballpoint pen and the calculator that have been handed out.
- Read the entire task before you begin to solve it, as there may be important information at the end of the text that you need to use to solve the task.
- All results must be written within the boxes. Answers written outside the boxes will not be reviewed and corrected. If you need paper, use the back of the paper sheets.
- Show your calculations in the boxes. You will only get max points if you show your calculations.
- When you have finished the exam, you must pass the test booklet to the person in charge.
- You must stop writing when the "STOP" signal is given.
- Stay in your place until you are allowed to leave the room.

Constants and Formulae

Avogadro's constant, $N_{\mathrm{A}}=6.0221 \times 10^{23} \mathrm{~mol}^{-1}$
Boltzmann constant, $k B=1.3807 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Universal gas constant, $R=8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=0.08205 \mathrm{~atm} \mathrm{~L} \mathrm{~K}{ }^{-1} \mathrm{~mol}^{-1}$
Speed of light, $c=2.9979 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck's constant, $h=6.6261 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Faraday constant, $F=9.64853399 \times 10^{4} \mathrm{C}$
Mass of electron, $m_{e}=9.10938215 \times 10^{-31} \mathrm{~kg}$
Standard pressure, $P=1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
Atmospheric pressure, $P_{\mathrm{atm}}=1.01325 \times 10^{5} \mathrm{~Pa}=760 \mathrm{mmHg}=760$ torr
Zero of the Celsius scale, 273.15 K
1 picometer $(\mathrm{pm})=10^{-12} \mathrm{~m} ; \quad 1 \AA=10^{-10} \mathrm{~m} ; \quad$ nanometer $(\mathrm{nm})=10^{-9} \mathrm{~m}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$1 \mathrm{amu}=1.66053904 \times 10^{-27} \mathrm{~kg}$
Ideal gas equation: $P V=n R T$
Enthalpy:
$H=U-P V$
Gibbs free energy: $G=H-T S$ $\Delta G=\Delta G^{o}+R T \ln Q$

$$
\Delta G^{o}=-R T \ln K=-n F E_{\text {cell }}^{o}
$$

Entropy change: $\quad \Delta S=\frac{q_{r e v}}{T}$, where $q_{r e v}$ is heat for the reversible process

$$
\Delta S=n R \ln \frac{V_{2}}{V_{1}} \text { (for isothermal expansion of an ideal gas) }
$$

Nernst equation: $\quad E=E^{O}+\frac{R T}{n F} \ln \frac{C_{O x}}{C_{\text {red }}}$
Energy of a photon: $\quad E=\frac{h c}{\lambda}$
Lambert-Beer law: $A=\log \frac{I_{0}}{I}=\varepsilon b C$

Integrated rate law
Zero order

$$
[\mathrm{A}]=[\mathrm{A}]_{0}-k t
$$

First order $\ln [\mathrm{A}]=\ln [\mathrm{A}]_{0}-k t$
Second order $\quad \frac{1}{[\mathrm{~A}]}=\frac{1}{[\mathrm{~A}]_{0}}+k t$
Arrhenius equation

$$
k=A e^{-E_{a} / R T}
$$

Periodic table of the elements with relative atomic masses and electronegativities

Problem 10 \% of total

a	b	c	d	e	f	g	h	Problem 1	$\%$
10	10	10	10	10	10	10	10	80	10

Figure 1, left: Schematic of redox flow battery. Right: 4 MWh containerized vanadium flow battery.

In the hunt for better solutions for energy storage, the redox flow batteries have recently had a resurgence in interest. The battery is comprised of two reaction chambers separated by a membrane with each chamber connected to an electrode and to a tank for storage of electrolyte. The most common of these is the vanadium redox battery.

During discharge the vanadium goes from $\mathrm{V}(\mathrm{V})$ to $\mathrm{V}(\mathrm{IV})$ in the positive electrolyte tank and from V (II) to V (III) in the negative electrolyte tank. The potential diagram for vanadium at pH $=0$ is given below.

$$
\left[\mathrm{VO}_{2}\right]^{+} \xrightarrow{+0.99}[\mathrm{VO}]^{2+} \xrightarrow{+0.34} \mathrm{~V}^{3+} \xrightarrow{-0.26} V^{2+} \xrightarrow{-1.18} V
$$

a) Write the balanced equations for the anode and cathode reactions during discharge

Anode:
Cathode:
b) What will the standard electrode potential of the cell be?
\square
c) Assume that the cathode half cell of the vanadium redox battery is connected to a standard hydrogen half cell $\left(\mathrm{E}^{\circ}=0\right)$. At what pH will the cathode reaction stop being spontaneous? Assume standard pressure and $25^{\circ} \mathrm{C}$ and $1.0 \mathrm{~mol} / \mathrm{L}$ for all vanadium species.
\square
A new vanadium redox battery is being built in China (scheduled completion 2019) that can deliver 200 MW for 4 hours.
d) Assume that the voltage stays at E^{0} and the battery is 90% discarged at the end. How many liters of $1.0 \mathrm{~mol} / \mathrm{L}$ battery solution is needed for the cathode?
\square

Liters of solution:
e) What will the actual potential of the battery at 90% discharge (assume $1.0 \mathrm{~mol} / \mathrm{I}$ of all constituents at starting point and constant $\mathrm{pH}=0$). Assume $25^{\circ} \mathrm{C}$.
\square
f) The electrolyte containing $\mathrm{V}(\mathrm{V})$ is made by dissolving $\mathrm{V}_{2} \mathrm{O}_{5}$ in sulphuric acid. Write the balanced equation for the solvation.

g) There is a leak! Suggest a balanced reaction for what happens when the two electrolytes meet. Assume equal molar ammounts of each electrolyte.

h) What happens if a leak in a fully discharged battery mixes the two electrolytes?

Problem 2

10 \% of total

a	b	c	d	e	f	g	h	i	j	k	Problem 2	x \%
10	10	10	10	10	10	10	10	10	10	10	110	10

Rohypnol is a benzodiazepine used in some countries to treat severe insomnia as well as being used in anesthesia.

As for other hypnotic drugs the use of Rohypnol should be limited to short-term use or on an occasional basis by those with chronic insomnia.

One way to make Rohypnol is illustrated in the scheme below:

a) The first step is to make \mathbf{A}. It is done by a substitution on the aliphatic carbon. Draw the structure of \mathbf{A}.
\square
b) Draw the structure of \mathbf{B} and draw a suggestion for the mechanism
\square
c) Draw the structure of \mathbf{C}.
\square
d) Draw the structure of \mathbf{D}.
\square
e) Draw the structure of \mathbf{E}.
\square
f) After ozonolysis, F containing three benzene rings was obtained. Draw the structure of F.
\square
g) \mathbf{F} can be cleaved by hydrolysis with diluted $\mathrm{H}_{2} \mathrm{SO}_{4}$. Draw the structures of \mathbf{G} and \mathbf{H}.
\square
h) Draw the structure of \boldsymbol{I}.
\square
i) Draw the structure of \mathbf{J}.
\square
j) Draw the structure of \mathbf{K}.
\square
k) Draw the structure of \mathbf{L}, and draw a resonance structure of \mathbf{K} that can explain the obtained product.
\square

Problem 3

10 \% of total

a	b	c	d	e	f	g	Problem 3	$\%$
10	10	10	10	10	10	10	70	10

A DNA (2'-deoxyribonucleic acid) strand is an unbranched polymer of repeating nucleotides. Each nucleotide consists of a heterocyclic, nitrogen-containing base, a fivecarbon sugar (ribose) and a phosphate group. The DNA segment shown is (5')AGTC(3') and has a formula mass of $1323,72 \mathrm{~g} / \mathrm{mol}$.

a) Assuming that equimolar amounts of the four bases are present in DNA, write the number of H -atoms per P -atoms. Calculate (to 3 significant figures) the theoretical mass percentage of H expected upon elemental analysis of DNA.
\square
The most common hydrogen-bonding patterns are those defined by James D. Watson and Francis Crick in 1953, in which A bonds specifically to T, and G bonds to C. This means that the complementary DNA segment to the segment shown in the picture is ($\left.5^{\prime}\right) \mathrm{GACT}\left(3^{\prime}\right)$
b) One strand of a double-heleical DNA has the sequence (5')GCGCAATATTTC(3'). Write the base sequence of the complementary strand.
c) Draw the structural formula of the two standard DNA base pairs and indicate the hydrogen bonds. The sugar-phosphate backbone can be abbreviated as (-R).
\square
d) The base composition of DNA generally varies from one species to another, In samples of DNA isolated from two unidentified species of bacteria, X and Y , adenine makes up 32% and 17% respectively, of the total bases.
I. What relative proportions of adenine, guanine, thymine and cytosine would you expect to find in the two DNA samples?
II. One of these species was isolated from a hot spring $\left(64^{\circ} \mathrm{C}\right)$. Which species (X or Y) is most likely the thermophilic bacterium and why?

I.		
		II.

e) The DNA double helix in the human body has a mass of about $10^{-18} \mathrm{~g}$ per 1000 nucleotide pairs; each base pair extends 3.4 Å.
I. Calculate the mass in grams of a double helical DNA molecule stretching from the Earth to the Moon (320000 km).
II. Your body contains about 45 gram of DNA. How many times could you stretch your DNA from the Earth to the Moon and back (640000 km)?

I.	II.

f) The DNA is constantly threatened by internal and external sources that can damage the molecule, including reactive oxygen species, other reactive radicals, as well as various types of ionizing radiation such as UV-radiation. All bases are affected and for adenine, the exocyclic amine group is vulnerable to oxidation. The amine is converted into a ketone. The base that is formed by this oxidation of adenine is called inosine. Draw the structure of the base part of inosine (you can skip drawing the sugar-phosphate backbone, just indicate the link/position with an R-group)
g) Inosine has different base-pairing properties than adenine, and prefer to base-pair with other bases than the thymine that was originaly pairing with the adenine.
I. How many of the hydrogen bonds between A and T in the original base pair are disrupted if adenine is oxidized to inosine?
II. Which of the three remaining bases (A, C or G) do you think form the most stable base pair with inosine? Draw the base pair showing the hydrogen bonding pattern.

I.	

Problem $4 \quad 10 \%$ of total

a	b	c	d	e	f	g	Problem 4	$x \%$
10	10	10	10	10	10	10	70	10

Elemental zinc is a common reductant and chlorine-water a common oxidant in qualitative inorganic analysis. In this task the reaction that occurs when elemental zinc is put into chlorine-water is considered from the thermodynamic point of view. Furthermore, the manufacture and stability of chlorine-water is considered.

The standard reduction potentials are as follows $\left(25.00^{\circ} \mathrm{C}\right)$:
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$
$E^{\circ}=-0.7626 V$
$\mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$
$\mathrm{E}^{\circ}=+1.3892 \mathrm{~V}$
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$
$\mathrm{E}^{\circ}=+1.3583 \mathrm{~V}$

The standard third-law entropies are as follows ($25.00^{\circ} \mathrm{C}$):
$\mathrm{Zn}^{2+}(\mathrm{aq})$
Zn (s)
$\mathrm{Cl}_{2}(\mathrm{aq})$
Cl_{2} (g)
$\mathrm{Cl}^{-}(\mathrm{aq})$

$$
\begin{aligned}
& \mathrm{S}^{\circ}=107.53 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& \mathrm{~S}^{\circ}=41.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& \mathrm{~S}^{\circ}=127.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& \mathrm{~S}^{\circ}=222.957 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& \mathrm{~S}^{\circ}=56.701 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

The standard state of gases is 1 bar $=100000$ Pa partial pressure.
Let us first consider the reaction of elemental zinc with chlorine-water:

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

a) Calculate the standard reaction Gibb's energy $\Delta_{r} G^{\circ}$ for the reaction at $25.00^{\circ} \mathrm{C}$.
$\Delta_{\mathrm{r}} \mathrm{G}^{\circ}=$
b) Calculate the standard reaction enthalpy $\Delta_{r} H^{\circ}$ for the reaction at $25.00^{\circ} \mathrm{C}$
\square
c) Calculate the standard cell voltage E° for the reaction at $75.00^{\circ} \mathrm{C}$. You may assume that $\Delta_{r} H^{\circ}$ and $\Delta_{r} \mathrm{~S}^{\circ}$ do not depend on temperature.
\square

$\mathrm{E}^{\circ}=$

Let us then consider the dissolution of chlorine into water:

$$
\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cl}_{2}(\mathrm{aq})
$$

d) Calculate the equilibrium constant k_{H} for the reaction, i.e. the Henry's law constant for chlorine, at $25.00^{\circ} \mathrm{C}$.
$\mathrm{K}_{\mathrm{H}}=$
e) Calculate the concentration of chlorine in water at equilibrium when a mixture of 0.200 mol chlorine gas and 1.00 L water is sealed into a 2.00 L flask at $25^{\circ} \mathrm{C}$. If you did not find a value for $\mathrm{k}_{\mathrm{H}} \mathrm{in} \mathrm{d}$), you can use $\mathrm{k}_{\mathrm{H}}=0.214$.
\square

Finally, let us consider how the concentration of the chlorine-water decreases when the above flask is opened, i.e. how the chlorine-water becomes flat. We consider he effect of opening the flask to be such that all chlorine gas is removed but no chlorine from the solution is neither removed nor entered into the gas phase. No water is removed from the flask, and the temperature remains constant. After resealing the flask a new equilibrium is established, i.e. chlorine is entered from the solution into the gas phase.
f) Calculate the concentration of chlorine in water after the flask has been opened once.
\square
g) How many times of opening the flask causes the concentration of chlorine in water to become less than 10% of the original?
\square

Problem 5

10 \% of total

a	b	c	d	e	f	g	h	Problem 5	$\%$
10	10	10	10	10	10	10	10	80	10

Carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$ is an elusive species, for long not thought to exist in pure state. Although the pure state is now known to exist under special circumstances, we normally have to consider a range of species including $\mathrm{CO}_{2}(\mathrm{aq}), \mathrm{CO}_{2}(\mathrm{~g}), \mathrm{HCO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}$ and OH^{-}when discussing the chemistry of carbonic acid.
a) Draw the Lewis structure for $\mathrm{H}_{2} \mathrm{CO}_{3}$, indicating all valence electrons for all atoms.
\square
b) Theoretically adding carbonic acid to water will create an equilibrium between $\mathrm{H}_{2} \mathrm{CO}_{3}$, CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Write a balanced equation for the equilibrium between these three species.
\square

The ratio between dissolved carbonic acid and dissolved carbon dioxide in water is given by the hydration equilibrium constant, $\mathrm{K}_{\mathrm{H}}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] /\left[\mathrm{CO}_{2}\right]$ is $1.7 \cdot 10^{-3}$ in pure water.
c) What species is the dominating caarbon species only considering the simple equilibrium from task b)?

The simple equilibrium above does not tell the full story. Carbonic acid is a diprotic acid, with the following dissociation constants:
$\mathrm{K}_{\mathrm{a} 1}=2.5 \cdot 10^{-4}$
$\mathrm{K}_{\mathrm{a} 2}=4.69 \cdot 10^{-11}$
As $\mathrm{K}_{\mathrm{a} 1} \gg \mathrm{~K}_{\mathrm{a} 2}$, it is clear that $\mathrm{CO}_{3}{ }^{2-}$ can be disregarded for all practical purposes.
d) Disregarding formation of CO_{2}, what is the pH of a $0.1 \mathrm{~mol} / \mathrm{L}$ solution of $\mathrm{H}_{2} \mathrm{CO}_{3}$?
$\mathrm{pH}=$

Finally, the concentration of dissolved CO_{2} is highly dependent on the partial pressure of CO_{2} on the surface of the solution, given by Henry's constant as:

$$
k_{H}=\frac{p_{\mathrm{CO}_{2}}}{\left[\mathrm{CO}_{2}\right]}=29.76 \mathrm{~atm} /(\mathrm{mol} / \mathrm{L})
$$

e) With a typical $p_{\mathrm{CO}_{2}}$ of $4 \cdot 10^{-4} \mathrm{~atm}$ at the surface of the earth, what will be the typical concentration of dissolved CO_{2} in a glass of pure water?
$\left[\mathrm{CO}_{2}\right]=$
With all these expressions at hand, for $\mathrm{K}_{\mathrm{a} 1}, \mathrm{~K}_{\mathrm{H}}, \mathrm{K}_{H}$, in addition to charge neutrality:

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}^{2-}\right]
$$

and the self-ionization of water:

$$
K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}
$$

we can paint the full picture of carbonic acid in water.
f) Show that the composition of the solution is fully determined by $p_{\mathrm{CO}_{2}}$ by finding an expression for $\left[\mathrm{H}^{+}\right]$that has $p_{\mathrm{CO}_{2}}$ as the only variable. You may disregard $\mathrm{CO}_{3}{ }^{2-}$ completely by saying that $\left[\mathrm{CO}_{3}{ }^{2-}\right]=0$.
\square
g) If you leave a glass of pure water on the bench and let it reach equilibrium for the CO_{2} (g), $\mathrm{CO}_{2}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ system. What will the pH be? If you did not find an expression for $\left[\mathrm{H}^{+}\right]$in task f), use $\left[\mathrm{H}^{+}\right]=\left(\frac{K_{H} K_{A}}{k_{h}} p_{C O_{2}}\right)^{1 / 2}$.
\square

In a bottle of fizzy drinks, the CO_{2} pressure over the liquid is typically 2.5 atm .
h) What is the dominant carbon species in such a drink?

Problem 6

10 \% of total

a	b	c	d	e	Problem 4	$\%$
10	10	10	10	10	50	10

Dinitrogen pentoxide, $\mathrm{N}_{2} \mathrm{O}_{5}$, is a reactive molecule used as a nitrant in organic chemistry. When NO reacts with NO_{2} and $\mathrm{O}_{2}, \mathrm{~N}_{2} \mathrm{O}_{5}$ it is formed according to reaction (1).

$$
\begin{equation*}
\mathrm{NO}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \tag{1}
\end{equation*}
$$

The following measurement data was obtained in an experimental series.

$[\mathrm{NO}]_{\text {initial }}$ $\left.\left(\mathrm{mol}^{3}\right) \mathrm{dm}^{3}\right)$	$\left[\mathrm{NO}_{2}\right]_{\text {jnitial }}\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$	$\left[\mathrm{O}_{2}\right]_{\text {nititial }}$ $\left(\mathrm{mol}^{3} / \mathrm{dm}^{3}\right)$	Initial rate $\left(\mathrm{mol} /\left(\mathrm{dm}^{3} \cdot \mathrm{~s}\right)\right)$
0.20	0.30	0.20	$1.26 \cdot 10^{-1}$
0.10	0.10	0.20	$2.10 \cdot 10^{-2}$
0.10	0.10	0.10	$2.10 \cdot 10^{-2}$
0.20	0.10	0.10	$4.20 \cdot 10^{-2}$

a) Determine the reaction orders for $\mathrm{NO}, \mathrm{NO}_{2}$ and O_{2}.
\square
Reaction orders: NO:
NO_{2} :
$\mathrm{O}_{2}: \ldots$
b) Calculate the rate constant. Also give the unit of the rate constant.

Answer: unit......

The $\mathrm{N}_{2} \mathrm{O}_{5}$ molecule decomposes in the gas phase according to the net reaction (2)

$$
\begin{equation*}
2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2} \tag{2}
\end{equation*}
$$

The temperature dependence of the decomposition was studied and the following measurement data was obtained:

$\mathrm{T}(\mathrm{K})$	$\mathrm{k}\left(\mathrm{s}^{-1}\right)$
338	$4.9 \cdot 10^{-3}$
318	$5.0 \cdot 10^{-4}$
298	$3.5 \cdot 10^{-5}$

c) Determine the mean activation energy of the reaction. Give your answer in $\mathrm{kJ} / \mathrm{mol}$.
\square
d) Calculate the amean frequency of the reaction (pre-exponential factor).
\square
e) What is the half-life of decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ at 402 K ? (If you weren't able to calculate E_{a} and A in c) and d), use the values $E_{a}=115 \mathrm{~kJ}$ and $A=3.6 \cdot 10^{14}$. These are however not the correct values)
\square

The end of the problem set

