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NOTISER

A METHOD OF COUNTING OUT PETROFABRIC DIAGRAMS

The counting out petrofabric diagrams as described in the literature
is carried out by means of a celluloid counter with circular holes re-
presenting 1, 1,5 or 2 per cent of the area of the circle of projection.
The present writer has found it more convenient to construct a net of
circles with the percentage wanted, with the distance between the centres
equal to the radius of the circles. The diagram, with the projection points
plotted on a tracing paper, is placed upon this net, and is covered by
a second sheet of tracing paper. The numbers of points falling within
each of the circles of the net can then easily be counted and are marked
by corresponding figures on the upper paper. In this way the counting
out of a diagram will be easier as well as more impersonal than by
using a celluloid counter.

Petrofabric diagrams are plotted in an equal area projection (the
Lambert projection of cartography) by use of the so called Schmidt net,
and are counted out by circles as described above. This method has
been criticized by Mellis!
on the ground that the con-
centration in a given point
of the hemisphere correctly
should be measured by
the number of plots falling
within a spherical circle
with its centre in the point.
The plane circles generally
used represent spherical
circles only in the centre
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1 Otto Mellis: Gefiigedia-
gramme in stereographi-
scher Projektion. Min.-
petr. Mitt, 53, p. 330, 1942.
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ellipses on the hemisphere with the longer axes in a meridional
direction. Due to this circumstance some distortion of the diagram will
take place. Te avoid this, Mellis proposes to represent petrofabric dia-
grams in the steréegraphic projection, in which a circle on the sphere
is represented by circles in the plane projection. In the stereographic
projection a diagram can correctly be counted out by circles, the radii
of which, with a given percentage, increase with the distance from the
centre of the projection.

There are two chief objections to the use of the stereographic pro-
jection for petrofabric diagrams. Firstly, the equal area projection has
already been wused for a great number of published diagrams, and
secondly the stereographic projection has the disadvantage of representing
equal angular distances on the sphere by greatly varying linear distances
in the projection. The paper of Mellis has therefore occasioned the author
to construct the net here reproduced for the counting out of petrofabric
diagrams in the equal area projection, by the use of spherical circles
with radius 8°1, representing 1 per cent of the hemisphere.! As is seen
from the figure the sphercial circles are represented by (somewhat de-
formed) ellipses, the difference between the axes of which increases
with the distance from the centre of the projection. Within a distance
of 25° from the centre the difference between the axes is less than one
milimetre on a net with a radius of 10 cm, and here circles may be
used without any appreciable error. Similar nets might be constructed
with 1,5 per cent circles, and with 2 per cent circles, with radii of 10°,0
and 11°5, respectively, and with circles with a radius of 5° for the
constructive counting out of diagrams proposed by Mellis (L. c.).

By devoting some time and care every one may construct similar
nets for his own use, to get fine results, however, exactness in construc-
tion as well as skill in drawing is needed. If the method here suggested
should meet with general approval, it would be desirable that some firm
or institution undertake the construction of the nets, which might then
be reproduced and distributed for sale. The present-writer is well aware,
that the orientation of minerals in rocks is not a finely adjusted process
so that the errors resulting from the commonly used methods are far
from being serious. Yet, the use of correct methods will give satisfaction
to the workers in this field, and uniformity in methods will be of im-
portance to this branch of science as a whole.

Trygve Strand.

! The area of a spherical calotte (a spherical circle with radius ¢) is given by
272R? (1— cos @), where R is the radius of the sphere. 1— cos ¢ is thus the
area of the spherical circle in preportion to the area of the hemisphere.
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UNIT CELL AND SPACE GROUP OF CHALCOCITE, Cu,S

In 1930, when doing X-ray work in the Mineralogical Laboratory
in Cambridge, I took a number of oscillation photographs of chalcocite
from Cornwall. Axes of rotation were the 3 crystallographic axes. From
the photographs the following dimensions of the unit cell were derived:

,=118A b,=27.0A c,=13.4A.

These values are not very exact; they may be uncertain by about 0.1 A.
They are in close agreement with a set of values which has been published
in the meantime.! Because of the very large number of atoms which must
be contained in -this cell I did not think it possible to determine the
structure from the photographs; in any case such a determination would
be an extremely laborious task; and so I did not publish any account
on my work chalcocite. Reviewing my old photographs I find that a fairly
reliable determination of the space group is possible. The interpretation
of the photographs was done by the graphical method worked out by
J. D. Bernal.2 Because of the large size of the unit cell a unique inter-
pretation was possible only for part of the spots in each photograph.
Even so | obtained a list of about 200 different sets of indices which
may be regarded as well established, many of them being represented
by several spots. In all of these observed sets of indices ikl the sum
k+1 is even, that is: k and !/ are either both even or both odd; in
other words: hkl is halved if k+1 is odd. This seems to be the only
kind of abnormal spacings. The only space group in accordance herewith

is C;:— Amm. Interchanging the axes a and c¢ also C;i — Cmm. Q%—
C222 and QLQ— Cmmm are possible. As no faces indicating a lower

symmetry than the orthorhombic holohedral have been observed on
crystals of chalcocite, all these space groups but the last one are im-
probable. The space group of chalcocite is therefore probably Q:lg— Cmmm.
To be in accordance with the space group notation here adopted we
have, as mentioned, to interchange the axes a and ¢ in the usual
orientation of the chalcocite crystals.

As to the number of atoms in the unit cell neither the cell dimen-
sions nor the specific gravity of chalcocite are known with sufficient
accuracy to give a unique result. Using the above cell dimensions and
the specific gravity 5.8 we obtain about 93 Cu,S in the unit cell. It is,
however, highly probable that the correct number is 96. This is supported
by several facts. 96 Cu,S in the unit cell gives a calculated density of
5.97, which is the value found for cubic Cu,S by Tom. Barth.®> In other
words: the cubic cell, which contains 4 Cu,S, is very exactly 1/24 the
volume of the orthorhombic cell. It might be assumed that the ortho-
rhombic cell would be built up of 24 more or less distorted cubic cells,
but this does not seem to be the case. It is true that the intensities of

' P. Rahlfs, Z. physik. Chem. (B) 31, 157, 1936.

2 J, D. Bernal, On the interpretation of X-ray, single crystal, rotation photographs.
Proc. Roy Soc. (A) 113, 117, 1927. i

3 Tom. Barth, Die reguldre Kristallart von Kupferglanz. Centralblatt f* Min. etc.,
A, 1926, p. 285.
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the spots in the oscillation photographs indicate a fairly distinct pseudo
cell which is 1/24 the volume of the orthorhombic unit cell, but its shape
is very far from cubic. This pseudo cell is indicated by the relatively
very high intensities of spots with indices like 084, 086, 344, 346,
3120, 3122, 3124. These indices are of the form 3n, 4n, 2n, and the
pseudo cell thus has the dimensions 3a, 1b,, 3c,, or 3.94 A, 6.75A,
6.70 A. The pseudo cell is therefore pseudo-tetragonal, and also pseudo-
hexagonal. (In accordance with what has been said above the product
3.94 A=< 6.75 A< 6.70 A is very nearly equal to (5.59 A)®, which is the
volume of the unit cell of cubic Cu,S.) — The general positions of equi-
valent points in the space group Q;Q—Cmmm are sixteen-fold. This is

an additional indication that the real number of “‘molecules” Cu,S in the
unit cell is 96 and not a number in the neighbourhood of 96, for 192
and 96 positions are readily built up of sets of 16. 12+ 6 sets of 16
will be needed, and the number of parameters to be fixed to determine the
structure is probably (12 4 6) < 3, or 54.

Oslo, Mineralogisk-geologisk museum, November 1944.
Ivar Oftedal.

NOTE ON THE METAMORPHIC DIFFERENTIATION
OF SOLID ROCKS

This note should be considered as a supplement to my article in
this journal 24 p. 98—111.

The activity of the given mineral usually varies with the kind and
composition of the surrounding minerals (the variation of the activity
with Z) even if the composition and the size of the given mineral and
the P, T are constant. This is because of the influence of the surrounding
phases on the surface tension of the considered phase. Thus, in a
homogeneous rock consisting of chemically compatible minerals it may
happen that the activities of the assemblage decrease if special minerals
cluster concretionary together. During the metamorphism there will there-
fore exist activity gradients in a homogeneous rock that try to differentiate
the rock by dispersion of some minerals at some places, migration of
the dispersed elements towards places of lower activities and consolidation
there. The variation of the activity of a mineral with the surrounding
phases is thus — along with the variation of the activity with the pressure,
P, and the size of mineral, Y — the most important factor to consider
when treating the metamorphic differentiation theoretically. In this way
I explain the occurrence of concretions of many mineral assemblages as
for instance calcite in slate, chert in chalk, quartz and small pegmatite
veins in gneisses, epidote, quartz and calcite in low grade amphibolites
and so on. During the growth of the concretion which commonly consists
of minerals containing the element with the greatest power of diffusion
in the rock, the other minerals must be enriched in a zone along the
boundary of the concretion.

Mineralogisk Institutt, Oslo, February 1935.
Hans Ramberg.



